
A Proposed Theory on Biodynamic Frequency Weighting for 
Hand-Transmitted Vibration Exposure

Ren G. DONG1,*, Daniel E. WELCOME1, Thomas W. MCDOWELL1, Xueyan S. XU1, Kristine 
KRAJNAK1, and John Z. WU1

1Engineering and Control Technology Branch, National Institute for Occupational Safety and 
Health, USA

Abstract

The objective of this study is to propose a theory on the biodynamic frequency weighting for 

studying hand-transmitted vibration exposures and vibration-induced effects. We hypothesize that 

the development of a vibration effect is the result of two consecutive but synergistic processes: 

biodynamic responses to input vibration and biological responses to the biomechanical stimuli 

resulting from the biodynamic responses. Hence, we further hypothesize that the frequency-

dependency (W) of the effect generally includes two components: a biodynamic frequency 

weighting (W1) and a biological frequency weighting (W2), or W=W1•W2. These hypotheses are 

consistent with the stress and strain analysis theory and methods widely used in structural 

dynamics and biomechanics. The factorization may make it easier to study the complex 

frequency-dependency using different approaches: the biodynamic frequency weighting depends 

on the passive physical response of the system to vibration, and it can thus be determined by 

examining the biodynamic response of the system using various engineering methods; on the other 

hand, the biological frequency weighting depends on the biological mechanisms of the effects, and 

it can be investigated by studying the psychophysical, physiological, and pathological responses. 

To help test these hypotheses, this study reviewed and further developed methods to derive the 

finger biodynamic frequency weighting. As a result, preliminary finger biodynamic frequency 

weightings are proposed. The implications of the proposed theory and the preliminary biodynamic 

frequency weightings are also discussed.
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Introduction

Prolonged, intensive exposure to hand-transmitted vibration can result in injury to fingers, 

hands, and arms. These injuries include dysfunctions of the peripheral vascular and nervous 

systems, as well as injuries to the musculoskeletal system. Collectively, these symptoms 

have been referred to as hand-arm vibration syndrome (HAVS). To help determine and 

reduce the risk of developing HAVS, the International Organization for Standardization 

(ISO) has established a standard for the measurement, evaluation, and assessment of hand-

transmitted vibration exposure1). Largely because vibration-induced white finger (VWF) has 

been most studied and considered as a hallmark of HAVS, its exposure-effect relationship 

proposed in a study2) is adopted in the standard and recommended as a basis for assessing 

the health effects1). According to its extrapolated relationship adopted in the standard1), ten 

percent of workers exposed daily (8 h) to frequency-weighted acceleration of 2.5 m/s2 for 12 

yr are predicted to develop VWF. This daily vibration exposure level has been adopted as a 

major control target in the national standards, guidelines, or regulations of many 

countries3–5). Although the results of some studies are consistent with the prediction of this 

exposure-effect relationship2, 6), the results of other studies suggest that it may largely over- 

or under-estimate the incidence of VWF7–14). This suggests that further studies are required 

to improve the reliability of the assessment method.

While a number of reasons or factors may contribute to the discrepancies observed in these 

studies, this study primarily addresses the issues closely related to a critical factor: 

frequency weighting. In addition to risk assessment, frequency weighting is also important 

for designing and analyzing tools and vibration-reducing devices. According to the current 

frequency weighting defined in the standard1), the vibration frequencies of a tool should be 

designed as high as possible, well above 12.5 Hz, so that the frequency-weighted 

acceleration may be minimized. However, this practice may increase the risk of VWF if its 

actual frequency dependency is largely different from the standardized frequency weighting, 

as indicated in some studies8, 10, 11, 13, 14). As stated in the current standard for anti-vibration 

glove assessment15), these gloves do not provide significant attenuation in the frequency 

range below 150 Hz. They are also much less effective for reducing finger-transmitted 

vibration than for reducing palm-transmitted vibration16). These observations suggest that 

such gloves would have little value, especially for finger protection, if the judgment is based 

on the reduction of frequency-weighted acceleration. Contradicting this judgment, a study 

suggested that such gloves could reduce some adverse finger effects by approximately 

30%17). While further studies are required to verify this finding, the identification of the 

actual frequency-dependencies of vibration-induced finger disorders can help find whether 

such gloves are really effective for protecting the fingers.

The current frequency weighting is not defined based on any direct evidence of the 

relationship between the exposure frequency and the incidence or prevalence of VWF; 

instead, it is based primarily on the subjective sensation of the entire hand-arm system in 

response to different frequencies measured by Miwa18, 19). In other words, the frequency-

dependency of VWF is assumed to be similar to the frequency-dependency of the subjective 

sensation. This assumption has been questioned by many researchers and some evidence has 

also suggested that the current frequency weighting is unlikely to be applicable to assess 
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VWF8–14). However, the standardized frequency weighting remains basically unchanged 

since it was adopted, except for minor modifications for easier design and construction of 

measurement instruments1). This is partially because significant revision of the frequency 

weighting could greatly influence associated regulations, instruments, and practice, partially 

because the actual frequency-dependency of VWF has not been clearly identified, and 

partially because the standard is not established solely for assessing and controlling VWF.

Ideally, the standardized frequency weighting or weightings should be defined based on the 

frequency dependencies of not only the major components of HAVS but also all major 

adverse psychological and physiological effects such as discomfort, pain, tingling and 

numbness during the operation of a vibrating tool or machine. It is possible that the current 

frequency weighting provides reasonable representations of the frequency dependencies of 

some of these effects. However, precisely which effects are well-represented remains 

unclear.

Based on this background, the objective of this study is to propose a theory on the 

biodynamic frequency weighting for studying hand-transmitted vibration exposures and 

vibration-induced effects. The proposed theory is based on the general knowledge of 

biomechanics and some observed phenomena of vibration-induced effects. The major 

methods for deriving the finger biodynamic frequency weighting are reviewed and further 

developed. Applying these methods, this study proposes preliminary finger biodynamic 

weightings for quantifying finger vibration exposures. The implications of the findings are 

discussed.

A General Hypothesis

A freely falling human body in the air is not usually injured even if the body acceleration is 

9.8 m/s2 and its velocity is large. This is because free falling does not induce significant 

dynamic forces or deformations inside the body. However, such a fall could result in severe 

or fatal injuries upon impact with the ground, because the impact forces could cause large 

internal stresses and deformations in the body leading to the destruction of body tissues. 

Severe vibration can injure a human body, but it may not damage the hairs on the head, 

because vibration can induce little dynamic force within the hairs. These examples 

demonstrate that it is not the motion/vibration itself but the motion/vibration-induced 

dynamic forces and deformations that are directly related to the injuries and damage. They 

also indicate that these biodynamic responses are an intermediate passive process between 

the input motion/vibration and the motion/vibration-induced injuries; hence, the biodynamic 

process is an essential component of the injury mechanism.

Although ordinary hand-transmitted vibration exposure rarely causes obvious traumatic 

injuries, the exposure may cause micro injuries in the tissues and microstructure damage, as 

observed in some studies20–22). Similar to traumatic injury, an acute injury is also a passive 

process. The development of an acute injury may be comparable to the passive processes of 

material fatigue23). As the basic stress and strain analysis theory and methods well-

established in structural mechanics have been adopted in the general methodology of 
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biomechanics24, 25), it is reasonable to hypothesize that these theories and methods are also 

applicable to the study of acute injuries and other acute vibration effects.

In addition to acute injuries, the vibration exposure may also generate some psychophysical 

responses and other physiological and pathological effects26, 27). Different from lifeless 

engineering materials, living tissues or structures can actively respond to injuries and 

mechanical stimuli. For example, cells and tissues can repair damage and remodel their local 

structures28–30). While material fatigue damage at a specific location in an engineering 

structure is usually directly related to the stress/strain at that location23), the vibration effects 

on a living structure may not be limited to the location where the injury or effect originated. 

For example, major nerve damage at a location within a finger may cause numbness at other 

parts of the finger. Sympathic effects may also occur at a location without direct vibration 

exposure26, 27). Therefore, the entire process toward the development of a chronic vibration 

disorder is much more complex than the purely passive mechanisms of engineering material 

fatigue. This may partially explain why the precise mechanisms of HAVS are not well 

understood1, 27). However, they all involve the intermediate process – passive physical 

responses to vibration. As it has been confirmed that the biomechanical loading conditions 

in living structures are not only directly related to the acute injuries but also closely 

associated with the growth and remodeling or adaptation of a local structure25), we 

hypothesize that the vibration biodynamic responses, as components of the biomechanical 

loading conditions in the hand-arm system, are also directly or indirectly related to various 

psychophysical, physiological, and pathological processes. The results of some vibration 

effect studies also support this hypothesis31–33).

Based on the general hypothesis, a conceptual model of the relationships among various 

factors and processes is proposed and illustrated in Fig. 1, which is a revision of a previously 

proposed model34). As an elaboration of the conceptual model, Fig. 2 shows a hypothetical 

model of the specific relationships among biodynamic responses, vibration intermediate 

effects, and symptoms of hand-arm vibration syndrome, which is a revised version of the 

model proposed by Griffin26).

Factorization of the Frequency-Dependency of Vibration Effects

According to the concept shown in Fig. 1, we further hypothesize that the development of 

any vibration-induced effect can be broadly considered as two consecutive but synergistic 

processes: biodynamic responses and biological responses of the hand-arm system, as also 

illustrated in Fig. 1. Their corresponding frequency dependencies are termed as biodynamic 

frequency weighting (W1) and biological frequency weighting (W2), respectively. In other 

words, the frequency-dependency (W) of any effect can be factored into two frequency 

weighting factors:

(1)

For example, mechanoreceptors are primary neurons that respond to mechanical stimuli 

such as mechanical pressure (stress) and distortion (strain) by firing action potentials or 

bioelectric signals to the brain35). Hence, the biodynamic responses (stress and strain) must 
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play an essential role in determining the psychophysical effects such as vibration sensation 

and discomfort. As a result, the frequency-dependencies of vibration sensation and 

discomfort must include the frequency-dependency of the biodynamic response (W1). If the 

bioelectric signals at each frequency change approximately linearly with the biodynamic 

responses, the frequency-dependency of the vibration sensation and discomfort may largely 

depend on the frequency-dependency of the biodynamic responses, which may be expressed 

as follows:

(2)

If the biodynamic responses also vary approximately linearly with the input vibration in a 

certain range, as observed in some studies36, 37), the vibration sensation or discomfort 

contours should exhibit parallel distribution patterns in some ranges of vibration magnitude 

and frequency. This prediction is consistent with parts of reported results18, 19, 38).

The reported research also shows some large inconsistences with the predicted linear pattern 

at some vibration magnitudes and frequencies38). This may be because both the biodynamic 

responses and the behaviors of the mechanoreceptors are not always linear35, 37, 39) Similar 

to any man-made sensor, the natural sensors may also be saturated when the stimuli are too 

strong. Therefore, the frequency-dependency of the biodynamic response alone is generally 

insufficient to represent the frequency-dependency of any vibration effect, and the biological 

frequency weighting (W2) should also be considered in determining the overall frequency 

weighting. The relationships between the mechanoreceptor responses and the input 

displacement/deformation reported by Martin and Jessell39) may be considered as examples 

of W2. They demonstrate that the sensitivity of the mechanoreceptor may not only vary non-

linearly but also change from one type to another35, 39). The density of mechanoreceptors 

may also vary with location 35, 40, 41); as a result, the same vibration deformation at different 

locations may cause varied perceptions. This may also be included in W2 or taken into 

account by quantifying the location-specific weighting.

While the biological weighting primarily depends on the psychophysical, physiological, and 

pathological processes, the biodynamic weighting primarily depends on the structural 

properties such as tissue mass, damping, and stiffness, and the boundary/interface conditions 

such as interface geometries and material stiffness and damping properties. Therefore, these 

weightings can be studied separately, which may make it easier to investigate and 

understand the complex mechanisms of many vibration effects.

A Discussion of the Current ISO Frequency Weighting Based on the New 

Weighting Hypothesis

According to the proposed new weighting concept, the current ISO frequency weighting can 

be factored into two components: WISO = W1ISO • W2ISO. An approach for judging the 

validity of the ISO weighting for assessing VWF is to find whether W1ISO represents the 

biodynamic weighting of VWF (W1VWF) and whether W2ISO represents the biological 

weighting of VWF (W2VWF).
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Fig. 3 shows the location-specific vibration perceptions of the hand-arm system at two 

different frequencies (16 and 125 Hz) reported by McDowell et al.42). Fig. 4 shows the 

relative frequency weightings of the major substructures of the system derived in the current 

study from the substructure power absorption data predicted by Dong et al.43). Because the 

vibration in the low-frequency range (<25 Hz) can be effectively transmitted to the arms, 

shoulder, neck, and head44–47), and the power absorption is primarily distributed in these 

substructures43), the biodynamic frequency weighting of the arms plays the dominant role in 

determining the overall biodynamic weighting of the entire hand-arm system, as shown in 

Fig. 4. This explains why stronger vibration perceptions are reported at these substructures 

at 16 Hz, as shown in Fig. 3. This can also explain why the vibration transmission to the 

head and its perception could be strongly affected by the arm postures in the low-frequency 

range47). Although workers using low-frequency non-percussive tools could complain of 

discomfort, VWF occurs at a very low prevalence among these workers7, 8). These 

observations suggest that the biodynamic and biological responses in the arms and shoulder 

are unlikely to be closely correlated with VWF. On the other hand, a much larger prevalence 

of VWF could be observed among workers using high-frequency tools such as grinders and 

chainsaws or percussive tools such as chipping hammers and rock drills that generate high-

frequency vibration components7, 8–14). This is likely due to the fact that the stimuli 

resulting from biodynamic responses at the higher frequencies are primarily concentrated in 

the hand, especially in the fingers43), as also evident from the distribution of the vibration 

perception in the hand-arm system at 125 Hz shown in Fig. 3. These observations suggest 

that VWF is likely to be primarily associated with the biodynamic and biological responses 

of the hand, especially the fingers. The asymmetrical distribution of VWF symptoms on the 

fingers 48) also suggests that VWF is likely to be primarily related to the finger local 

biodynamic and biological responses, although the sympathetic response of the biological 

system could also be part of the mechanisms of VWF, as shown in Fig. 2. Therefore, the 

frequency-dependency of VWF (WVWF) is likely to consist primarily of following two 

components: the frequency-dependency of finger biodynamic response (or W1VWF ≈ 

W1Fingers), and the frequency-dependency of the finger biological responses related to VWF 

(or W2VWF ≈ W2Fingers).

Because the subjective sensation contours used for deriving the ISO frequency weighting 

were measured without differentiating the locations of the vibration perception18, 19), they 

represent the frequency-dependency of the overall perception of the entire hand-arm system. 

Therefore, W1ISO represents the frequency-dependency of the biodynamic response of the 

entire system. This has been confirmed from the fact that the frequency-dependency of the 

total vibration power absorption of the entire system is similar to the ISO frequency 

weighting, disregarding the vibration direction49–51). On the other hand, the frequency-

dependency of the total VPA (WVPA) approximately represents the maximum profile of the 

weightings of the VPAs distributed in the major substructures of the hand-arm system, as 

also shown in Fig. 4. W1ISO is representative of WVPA_Fingers or W1Fingers only in a certain 

high-frequency range, but W1ISO is substantially different from W1Fingers at frequencies 

below 100 Hz.
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As evidenced from the vibrotactile perception tests at different parts of the hand-arm 

system40, 41), the subjective sensation generally varies with the measurement location on the 

system. Therefore, the biological frequency weighting for finger sensation may be different 

from that for arm sensation; then, the biological weighting for the entire system sensation 

may not be used to represent the biological weighting for finger sensation. Furthermore, the 

biological weighting for the sensation may be different from the biological weighting for the 

physiological and pathological effects that lead to the development of VWF. For these two 

reasons, W2ISO is unlikely to be fully representative of W2VWF or W2Fingers.

Based on the above discussions, we hypothesize that the ISO frequency weighting is not 

suitable for assessing VWF. However, the discussions also suggest that the ISO weighting 

may be acceptable for approximately assessing the vibration perception or discomfort of the 

entire hand-arm system in certain ranges of vibration magnitude and frequency. Some 

results of the reported studies also support this hypothesis37, 52). Another study also reported 

that the ISO frequency-weighted acceleration was reasonably correlated with neurological 

disorders in the wrist53). This is at least partially because the frequency-dependency of the 

biodynamic response in the palm-wrist-forearm system is similar to the ISO frequency 

weighting in the dominant frequency range of the majority of powered hand tools, as also 

shown in Fig. 4.

Quantification of Hand-Transmitted Vibration Exposure

While further discussions on the biological frequency weighting are beyond the scope of this 

study, the following sections focus on discussions primarily of the quantification of hand-

transmitted vibration exposure based on the biodynamic responses and the identification of 

the biodynamic frequency weighting.

Vibration biodynamic stimuli

Vibration biodynamic responses of the hand-arm system have been most frequently studied 

by measuring and examining functions such as apparent mass, mechanical impedance, 

dynamic stiffness, and vibration transmissibility54). These functions reflect the overall 

dynamic properties of the system; hence, they can be used to estimate the overall 

biodynamic responses for a given input vibration or to construct a model of the system to 

estimate the biodynamic responses distributed in the system.

In principle, the biodynamic responses to be used to quantify the vibration exposure should 

be those directly associated with the vibration effects. Vibration biodynamic responses 

include the responding motions (displacement, velocity, and acceleration) of the system, 

responding forces at the interfaces (driving-point force) and within the system (pressure or 

stress), dynamic deformation (strain magnitude and rate), and their combinations (vibration 

power absorption and VPA density). The most studied biodynamic response is the vibration 

power absorption of the entire hand-arm system, as an integrated measure of the distributed 

VPA55–57). Although these biodynamic measures are related to each other, some of them 

may be more directly related to vibration effects than others. For example, the impact force/

stress acting on the joints may be more directly related to the injuries and damage to the 

joints and bones because such cases were more frequently observed among workers using 
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percussive tools58, 59). On the other hand, the deformation/strain may be more related to the 

soft tissue injuries 31) and vibration perception33).

While further studies may help identify the most suitable biodynamic stimulus for 

evaluating a particular major vibration disorder, the general knowledge of structural 

mechanics and biomechanics suggests that the vibration stresses and strains are likely to be 

among the essential biodynamic stimuli directly associated with many vibration 

effects23, 24). This hypothesis has also been positively tested in some studies of the vibration 

effects31–33). Because vibration power absorption density (VPAD) is a combined measure of 

the vibration stress and the strain rate60), it is considered as a basic biodynamic stimulus for 

vibration exposure quantification in the following discussion.

Role of biodynamic weighting in the quantification of vibration exposure

The tool or machine vibration input to the hand can be reliably measured using 

accelerometers. This method has been conventionally used in the measurement of the 

exposure and adopted in the standard1). Therefore, the vibration exposure dose quantified 

based on any alternative mechanical stimulus should also be expressed as a function of the 

acceleration, similar to the method used in the standards1). Also similar to the current 

frequency weighting defined in the standard1), the biodynamic frequency weighting is 

actually a transfer function that converts the input vibration and influencing factors into the 

required biodynamic stimulus for the formulation of the exposure dose. Besides improving 

the understanding of the mechanisms of vibration-induced disorders, the major purpose for 

determining the biodynamic frequency weighting is to efficiently quantify the exposure dose 

based on the selected biodynamic stimulus for workplace applications.

Methods for Deriving Finger VPAD Weighting

The above discussions suggest that the finger VPAD can be used as one of the biodynamic 

measures to quantify the finger vibration exposure and to derive W1Fingers. Currently, it is 

not feasible to directly measure the VPAD. The VPAD has been estimated using some 

modeling methods. The average finger VPAD weighting may also be estimated from finger 

vibration transmissibility, which is also explained in this section.

Finger average VPAD

The average VPAD in the fingers can be estimated using a combined experimental and 

modeling method43). First, the mechanical impedances distributed at the fingers and the 

palm of the hand can be directly measured. Second, the parameters of a mechanical-

equivalent model of the hand-arm system can be determined using the impedance data 

because the impedance is a measure of the overall dynamic properties of the system. Third, 

the VPA in the fingers exposed to a given acceleration at each frequency can be estimated 

from the model. In this averaging method, the finger volume is assumed to be constant at 

each frequency. Then, the average VPAD is approximately equal to the finger VPA. Then, 

its normalized frequency weighting (WVPAD) can be derived using the following formula:

(3)
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where ω is the frequency in Rad/sec, P is the average VPAD, and PMax is the maximum 

average VPAD in the frequency range of concern, and 0.958 is the maximum value in the 

current ISO frequency weighting when expressed in one-third octave bands1).

Fig. 5 shows some examples of the average finger VPAD-based frequency weightings in 

three directions, which were derived from a set of recently reported experimental data 

measured with the posture and hand forces (50 N push and 30 N grip) required in the 

standardized anti-vibration glove test15). The weighting in each direction was normalized 

with respect to the maximum average VPAD in each direction. The results indicate that the 

finger average VPAD weighting could vary greatly with different vibration directions.

Detailed VPAD distribution

Fig. 6 (a) shows a finite element model of a fingertip reported by Wu et al. 60). While the 

distributed vibration stress and strain can be predicted using the model, the VPAD can be 

evaluated from the stress and the strain rate. After the VPAD for a given vibration 

acceleration is estimated, the frequency weighting of the VPAD can be derived with a 

formula similar to that in Eq. 360).

Fig. 6 (b) shows some examples of VPAD-based frequency weightings at several locations 

on the cross section of the fingertip model, together with the vibration transmissibility at the 

top of the fingertip60). As expected, the peak VPAD-based weighting at each point is 

correlated with the resonance of the soft tissue at that point. Below 200 Hz, the tissues of the 

fingertip vibrate more or less in-phase for the given conditions; hence, their weighting 

values are similar. At higher frequencies, the peak frequencies vary with location, because 

the high-frequency responses depend on high-frequency local vibration modes. However, 

the basic trends in the average VPAD weightings are similar to the transmissibility measured 

at the top of the fingertip. This observation suggests that, as a crude approximation, the 

vibration transmissibility can be used to represent the VPAD weighting in a certain 

frequency range. This also suggests that the basic characteristics of the finger VPAD 

weighting can be partially understood by examining the characteristics of finger vibration 

transmissibility.

Basic characteristics of finger vibration transmissibility

The mass of a conventional accelerometer and its installation device could be comparable to 

or larger than the mass of the finger section where the accelerometer is located. The 

installation of the accelerometer could also largely change some dynamic properties of the 

finger due to the fastening stiffness and pressure applied on the finger. These issues can be 

avoided using a laser vibrometer in the measurement of the finger vibration transmissibility, 

which is likely to provide more reliable experimental data. Hence, the data measured using 

laser vibrometers were used as a basis for examining the characteristics in this study.

The reported data indicate the transmissibility is locationspecific46, 61–64). At the fingertip in 

the direction vertical to the contact surface (X and Z directions shown in Fig. 5), the 

transmissibility could be near unity at frequencies up to more than 300 Hz, primarily 

depending on the applied fingertip force. This is because the fingertip usually has relatively 
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small mass, large damping, and high contact stiffness in this direction due to the larger 

contact pressure at the fingertip65). The resonance frequency generally decreases with the 

increase in the distance from the fingertip46, 66). The highest transmissibility on the finger is 

usually between the first and third metacarpals46, 66). Because of the nonlinear features of 

the finger tissues; increasing the finger force increases the contact stiffness and thus the 

resonance frequency66), which is consistent with that observed in the finger VPA study43). 

The highest transmissibility usually occurs in the range of 50 to 250 Hz. This resonance 

frequency range is consistent with that observed in finger impedance studies43). However, 

the frequency of peak transmissibility could be reduced to below 25 Hz in a grip-only action 

with a low grip force52, 58). Because the shear stiffness is usually less than the compression 

stiffness, the resonance frequency in the direction along a handle axial direction is usually 

less than those in the other directions46, 51).

Synthesis of Finger Biodynamic Weighting

Ideally, the representative finger biodynamic weighting should be defined based on the 

biodynamic stimuli measured at critical locations as a function of representative working 

conditions. However, without a sufficient understanding of the mechanisms of vibration-

induced disorders, it is very difficult to identify these critical locations. Furthermore, without 

sufficient VPAD or transmissibility data, it is also very difficult to define a representative 

finger weighting function that encompasses all important factors. Therefore, some 

assumptions and simplifications have to be made in the current study to synthesize the 

preliminary biodynamic frequency weighting.

Profile of the finger average VPAD weightings

This method is based on the following major assumptions: (1) the average VPAD in each 

direction is equally important; (2) the major finger resonances are in the range of 25 to 250 

Hz; and (3) the fundamental hand resonance (25 to 50 Hz) also affects the finger vibration 

effects. Based on these assumptions and the available VPAD and transmissibility data, a 

finger biodynamic weighting is defined as the approximate maximum profile of the average 

VPAD-based or transmissibility-based weightings, shown in Fig. 7.

Axial VPAD method and total VPAD method

To provide a better assessment of vibration exposure, the frequency weighting should be 

separately considered for each working condition or defined as a function of the influencing 

factors. Furthermore, the vibration effects may vary with the vibration direction. The large 

shear response along the Y direction shown in Fig. 5 may cause some effects different from 

those in the other two axes. It is also practical to separately consider the Y direction 

weighting because it is the longitudinal axis of a tool handle. However, it is very difficult to 

differentiate the X and Z directions shown in Fig. 5 in the vibration measurement at 

workplaces. A combined frequency weighting for these two directions may be considered.

When the direction effects are identified from further psychophysical or biological studies, 

the direction-specific frequency weightings can also be combined using direction factors: 

wX, wY, and wZ. The combined biodynamic frequency weighting can be derived based on the 
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total VPAD method. This method assumes that finger disorders are associated with the 

weighted summation (PTotal) of the VPADs in the three directions (PX, PY, and PZ), which 

can be generally expressed as follows:

(4)

After PTotal is determined, its weighting (WVPAD-Total) can be derived from Eq.(3).

Without any effect information on the vibration direction, this study assumes that wX = wY = 

wZ = 1. Fig. 8 shows an example of the total VPAD weighting for the unit direction factor, 

together with the relative VPAD weightings in the three directions. They were derived from 

the same data used for deriving the average VPAD weightings in each direction shown in 

Fig. 5. Because the VPAD in the Y direction in the resonance range is much greater than 

those in the other two directions, WVPAD-Y plays a dominant role in determining 

WVPAD-Total.

Three-axis vibration transmissibility method

With a method similar to the three-axis total VPAD weighting method, the three-axis 

vibration transmissibility weighting (WTr-Total) at each frequency can be expressed as 

follows:

(5)

where TTr-X, TTr-Y, and TTr-Z are the vibration transmissibility in the three directions, 

respectively.

Fig. 9 shows an example of the total vibration transmissibility weighting for wX = wY = wZ = 

1, together with the relative transmissibility weightings in the three directions. The 

transmissibility-based weightings are similar to the VPAD-based weightings shown in Fig. 

8. Their similarity also further suggests that the VPAD weighting can be approximately 

represented using the transmissibility-based frequency weighting.

Maximum profile of finger vibration transmissibility

While it is difficult to pinpoint the location of the biodynamic response on each finger that is 

primarily responsible for the development of a particular finger disorder, the average finger 

VPAD weighting or transmissibility of the fingers may be used to represent the finger 

biodynamic weighting, as demonstrated in the above subsections. Alternatively, the finger 

biodynamic weighting may also be represented using the maximum profile of the finger 

transmissibility functions measured at different locations on each finger. Such a weighting 

can be derived by replacing the average transmissibility function in Eq.(5) with the 

maximum profile of the distributed transmissibility functions. An example of the total 

profile weighting is shown in Fig. 10, together with the profile weightings for each direction. 

Their basic trends are similar to those shown in Figs. 8 and 9.
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Major Limitations

Because the synthesized weighting shown in Fig. 7 is the profile of the finger biodynamic 

weightings, it may not truly represent the frequency-dependency of the finger biodynamic 

response for a specific working condition. While those shown in Figs. 8–10 may be more 

representative of some specific working conditions, they may not be applicable to other 

conditions. Furthermore, they are not applicable for quantifying the vibration exposures of 

the other substructures of the hand-arm system. It is better to quantify all the major 

biodynamic responses (stresses, strains, and VPAD) for each substructure of concern for the 

representative working conditions. In addition to the root-mean-square values of the 

vibration stresses and strains, some other exposure parameters such as their peak values, 

impulsiveness measures (like VDV for whole-body vibration), and magnitude-cycle counts 

(widely used in material fatigue analyses23)) may also be quantified to explore their 

relationships with the vibration effects. These quantifications require developing a 

generally-applicable comprehensive finite-element model of the hand-arm system, which 

remains a formidable research task.

References

1. ISO 5349–1. Mechanical vibration – measurement and evaluation of human exposure to hand-
transmitted vibration – Part 1: General requirements. International Organization for Standardization; 
Geneva, Switzerland: 2001. 

2. Brammer AJ. Dose-response relationship for hand-transmitted vibration. Scand J Work Environ 
Health. 1986; 12:284–8. [PubMed: 3775313] 

3. ANSI 2.70, 2006 (replacement of ANSI S3.34) Guide for the measurement and evaluation of human 
exposure to vibration transmitted to the hand. American National Standards Institute (ANSI), New 
York, USA

4. European Parliament and the Council of the European Union Directive 2002/44/EC (EU Directive) 
on the minimum health and safety requirements regarding the exposure of workers to the risks 
arising from physical agents (vibration). Official Journal of the European Communities, OJ L177, 
6.7.2002.

5. WAC (2002) (296–62-05130): Analyzing and Reducing WMSD Hazards. In Title 296, Washington 
Administrative Code, Chapter 62, Section 05130: Washington State Department of Labor and 
Industries, USA.

6. Anttonen, H.; Virokannas, H. Hand vibration among snowmobile drivers and prediction of VWF by 
vibration standard. In: Dupuis, H.; Christ, E.; Sandover, J., et al., editors. Proceedings of the 6th 
international conference on hand-arm vibration; 1992. p. 875-883.

7. Tominaga Y. The relationship between vibration exposure and symptoms of vibration syndrome. 
Journal of Science of Labor. 1993:1–14.

8. Tominaga Y. New frequency weighting of hand-arm vibration. Ind Health. 2005; 43:509–15. 
[PubMed: 16100927] 

9. Bovenzi M. Exposure-response relationship in the hand-arm vibration syndrome: an overview of 
current epidemiology research. Int Arch Occup Environ Health. 1998; 71:509–19. [PubMed: 
9860158] 

10. Griffin MJ, Bovenzi M, Nelson CM. Dose-response patterns for vibration-induced white finger. 
Occup Environ Med. 2003; 60:16–26. [PubMed: 12499452] 

11. Nilsson T, Burström L, Hagberg M. Risk assessment of vibration exposure and white fingers 
among platers. Int Arch Occup Environ Health. 1989; 61:473–81. [PubMed: 2789195] 

12. Barregard L, Ehrenström L, Marcus K. Hand-arm vibration syndrome in Swedish car mechanics. 
Occup Environ Med. 2003; 60:287–94. [PubMed: 12660377] 

DONG et al. Page 12

Ind Health. Author manuscript; available in PMC 2015 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Starck J, Pekkarinen J, Pyykkö I. Physical characteristics of vibration in relation to vibration-
induced white finger. Am Ind Hyg Assoc J. 1990; 51:179–84. [PubMed: 2327329] 

14. Dandanell R, Engstrom K. Vibration from riveting tools in the frequency range 6 Hz-10 MHz and 
Raynaud’s phenomenon. Scand J Work Environ Health. 1986; 12:338–42. [PubMed: 3775319] 

15. ISO 10819. Mechanical vibration and shock – Hand-arm vibration – Method for the measurement 
and evaluation of the vibration transmissibility of gloves at the palm of the hand. International 
Organization for Standardization; Geneva: 1996. 

16. Dong RG, McDowell TW, Welcome DE, Warren C, Wu JZ, Rakheja S. Analysis of anti-vibration 
gloves mechanism and evaluation methods. J Sound Vibrat. 2009; 321:435–53.

17. Jetzer T, Haydon P, Reynolds D. Effective intervention with ergonomics, antivibration gloves, and 
medical surveillance to minimize hand-arm vibration hazards in the workplace. J Occup Environ 
Med. 2003; 45:1312–7. [PubMed: 14665818] 

18. Miwa T. Evaluation Methods for Vibration Effect. Part 3: Measurements of threshold and equal 
sensation contours on hand for vertical and horizontal sinusoidal vibrations. Ind Health. 1967; 
5:213–20.

19. Miwa T. Evaluation methods for vibration effect: Part 6. Measurements of unpleasant and 
tolerance limit levels for sinusoidal vibrations. Ind Health. 1968; 6:18–27.

20. Yan JG, Matloub HS, Sanger JR, Zhang LL, Riley DA. Vibration-induced disruption of retrograde 
axoplasmic transport in peripheral nerve. Muscle Nerve. 2005; 32:521–6. [PubMed: 15977204] 

21. Lundborg G, Dahlin LB, Hansson HA, Kanje M, Necking LR. Vibration exposure and peripheral 
nerve fiber damage. J Hand Surg Am. 1990; 15:346–51. [PubMed: 2157744] 

22. Curry BD, Bain JL, Yan JG, Zhang LL, Yamaguchi M, Matloub HS, Riley DA. Vibration injury 
damages arterial endothelial cells. Muscle Nerve. 2002; 25:527–34. [PubMed: 11932970] 

23. Jaap, S. Fatigue of structure and materials. Kluwer Academic Publishers; Boston: 2009. 

24. Knudson, D. Fundamentals of biomechanics. Kluwer Academic; Boston: 2012. 

25. Taber LA. Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev. 1995; 
48:487–545.

26. Griffin, MJ. Handbook of human vibration. Academic Press; London: 1990. 

27. Stoyneva Z, Lyapina M, Tzvetkov D, Vodenicharov E. Current pathophysiological views on 
vibration-induced Raynaud’s phenomenon. Cardiovasc Res. 2003; 57:615–24. [PubMed: 
12618223] 

28. Takeuchi T, Futatsuka M, Imanishi H, Yamada S. Pathological changes observed in the finger 
biopsy of patients with vibration-induced white finger. Scand J Work Environ Health. 1986; 
12:280–3. [PubMed: 3775312] 

29. Inaba R, Furuno T, Okada A. Effects of low- and high-frequency local vibration on the occurrence 
of intimal thickening of the peripheral arteries of rats. Scand J Work Environ Health. 1988; 
14:312–6. [PubMed: 3201191] 

30. Krajnak K, Waugh S, Johnson C, Miller R, Kiedrowski M. Vibration disrupts vascular function in 
a model of metabolic syndrome. Ind Health. 2009; 47:533–42. [PubMed: 19834263] 

31. Necking LE, Lundstrom R, Dahlin LB, Lundborg G, Thornell LE, Friden J. Tissue displacement is 
a causative factor in vibration-induced muscle injury. J Hand Surg [Br]. 1996; 21:753–7.

32. Jen CJ, McIntire LV. Characteristics of shear-induced aggregation in whole blood. J Lab Clin Med. 
1984; 103:115–24. [PubMed: 6690635] 

33. Wu JZ, Krajnak K, Welcome DE, Dong RG. Analysis of the dynamic strains in a fingertip exposed 
to vibration: correlation to the mechanical stimuli on mechanoreceptors. J Biomech. 2006; 
39:2445–56. [PubMed: 16168999] 

34. Dong RG, Wu JZ, Welcome DE. Recent advances in biodynamics of hand-arm system. Ind Health. 
2005; 43:449–71. [PubMed: 16100922] 

35. Akoev, GN.; Alekseev, NP.; Krylov, BV. Mechanoreceptors: Their functional organization. 
Springer-Verlag; New York: 2012. 

36. Aldien Y, Marcotte P, Rakheja S, Boileau PE. Mechanical impedance and absorbed power of 
hand-arm under x(h)-axis vibration and role of hand forces and posture. Ind Health. 2005; 43:495–
508. [PubMed: 16100926] 

DONG et al. Page 13

Ind Health. Author manuscript; available in PMC 2015 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Kihlberg S. Biodynamic response of the hand-arm system to vibration from an impact hammer and 
a grinder. Int J Ind Ergon. 1995; 16:1–8.

38. Morioka M, Griffin MJ. Magnitude-dependence of equivalent comfort contours for fore-and-aft, 
lateral and vertical hand-transmitted vibration. J Sound Vibrat. 2006; 295:633–48.

39. Martin, JH.; Jessell, TM. Modality coding in the somatic sensory system. In: Kandel, E., 3rd; 
Schwartz, JH.; Jessell, TM., editors. Principles of neural science. Elsevier; New York: 1991. p. 
341-52.

40. Johansson RS, Vallbo AB. Tactile sensibility in the human hand: relative and absolute densities of 
four types of mechanoreceptive units in glabrous skin. J Physiol. 1979; 286:283–300. [PubMed: 
439026] 

41. Verrillo RT. Effect of contactor area on the vibrotactile threshold. J Acoust Soc Am. 1963; 
35:1962–6.

42. McDowell, TW.; Kashon, ML.; Welcome, DE.; Warren, C.; Dong, RG. Relationships between 
psychometrics, exposure conditions, and vibration power absorption in the hand-arm system. 
Proceedings of the 11th International Conference on Hand-Arm Vibration; Bologna, Italy. 2007. 

43. Dong JH, Dong RG, Rakheja S, Welcome DE, McDowell TW, Wu JZ. A method for analyzing 
absorbed power distribution in the hand and arm substructures when operating vibrating tools. J 
Sound Vibrat. 2008; 311:1286–309.

44. Pyykkö I, Färkkilä M, Toivanen J, Korhonen O, Hyvärinen J. Transmission of vibration in the 
hand-arm system with special reference to changes in compression force and acceleration. Scand J 
Work Environ Health. 1976; 2:87–95. [PubMed: 959789] 

45. Reynolds D, Angevine EN. Hand–arm vibration, Part II: vibration transmission characteristics of 
the hand and arm. J Sound Vibrat. 1977; 51:255–65.

46. Welcome DE, Dong RG, Xu XS, Warren C, McDowell TW, Wu JZ. An investigation on the 3-D 
vibration transmissibility on the human hand-arm system using a 3-D scanning laser vibrometer. 
Can Acoust. 2011; 39:44–5.

47. Sakakibara H, Kondo T, Miyao M, Yamada S, Nakagawa T, Kobayashi F, Ono Y. Transmission of 
hand-arm vibration to the head. Scand J Work Environ Health. 1986; 12:359–61. [PubMed: 
3535062] 

48. Pelmear, PL.; Wasserman, DE. Hand-arm vibration: A comprehensive guide for occupational 
health professionals. OEM Press; Beverly Farms, MA, USA: 1998. 

49. Dong RG, Welcome DE, McDowell TW, Wu JZ, Schopper AW. Frequency weighting derived 
from power absorption of fingers-hand-arm system under zh-axis. J Biomech. 2006; 39:2311–24. 
[PubMed: 16154576] 

50. Dong RG, Rakheja S, McDowell TW, Welcome DE, Wu JZ. Estimation of the biodynamic 
responses distributed at fingers and palm based on the total response of the hand-arm system. Int J 
Ind Ergon. 2010; 40:425–36.

51. Dong RG, Welcome DE, Xu XS, Warren C, McDowell TW, Wu JZ, Rakheja S. Mechanical 
impedances distributed at the fingers and palm of the human hand in three orthogonal directions. J 
Sound Vibrat. 2012; 331:1191–206.

52. Maeda S, Geridonmes SG, Miyashita K, Ishimatsu K. Frequency weighting of hand-transmitted 
vibration for evaluating comfort. Can Acoust. 2011; 39:94–5.

53. Malchaire J, Piette A, Cock N. Associations between hand–wrist musculoskeletal and 
sensorineural complaints and biomechanical and vibration work constraints. Ann Occup Hyg. 
2001; 45:479–91. [PubMed: 11513798] 

54. Dong RG, Rakheja S, Schopper AW, Han B, Smutz WP. Hand-transmitted vibration and 
biodynamic response of the human hand-arm: a critical review. Crit ReviewsTM Biomed Eng. 
2001; 29:391–441.

55. Pradko F, Lee RA, Greene JD. Human vibration-response theory. Am Soc Mech Eng. 1965 Paper 
No. 65-WA/HUF-19. 

56. Cundiff JS. Energy dissipation in human hand-arm exposed to random vibration. J Acoust Soc Am. 
1976; 59:212–4. [PubMed: 1249319] 

57. Lidström, IM. Vibration injury in rock drillers, chiselers, and grinders. Some views on the 
relationship between the quantity of energy absorbed and the risk of occurrence of vibration 

DONG et al. Page 14

Ind Health. Author manuscript; available in PMC 2015 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injury. Proceedings of the 2nd International Conference on Hand-Arm Vibration; Cincinnati, OH, 
USA. 1977. p. 77-83.

58. Bovenzi M, Fiorito A, Volpe C. Bone and joint disorders in the upper extremities of chipping and 
grinding operators. Int Arch Occup Environ Health. 1987; 59:189–98. [PubMed: 3557627] 

59. Gemne G, Saraste H. Bone and joint pathology in workers using hand-held vibration tools. Scand J 
Work Environ Health. 1987; 13:290–300. [PubMed: 3324310] 

60. Wu JZ, Dong RG, Welcome DE, Xu SX. A method for analyzing vibration power absorption 
density in human fingertip. J Sound Vibrat. 2010; 329:5600–14.

61. Scalise L, Rossetti F, Paone N. Hand vibration: non-contact measurement of local transmissibility. 
Int Arch Occup Environ Health. 2007; 81:31–40. [PubMed: 17410375] 

62. Sörensson A, Lundström R. Transmission of vibration to the hand. J Low Freq Noise Vib. 1992; 
11:14–22.

63. Concettoni E, Griffin M. The apparent mass and mechanical impedance of the hand and the 
transmission of vibration to the fingers, hand, and arm. J Sound Vibrat. 2009; 325:664–78.

64. Xu XS, Welcome DE, McDowell TW, Wu JZ, Wimer B, Warren C, Dong RG. The vibration 
transmissibility and driving-point biodynamic response of the hand exposed to vibration normal to 
the palm. Int J Ind Ergon. 2011; 41:418–27.

65. Aldien Y, Welcome D, Rakheja S, Dong R, Boileau PE. Contact pressure distribution at hand-
handle interface: role of hand forces and handle size. Int J Ind Ergon. 2005; 35:267–86.

66. Welcome, DE.; Dong, RG.; Xu, XS.; Warren, C.; McDowell, TW.; Wu, JZ. Effectiveness of anti-
vibration gloves for reducing finger vibration. Proceedings of the 4th American Conference on 
Human Vibration; Hartford, Connecticut, USA. 6–7; 2012. 

DONG et al. Page 15

Ind Health. Author manuscript; available in PMC 2015 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A conceptual model of hand-transmitted vibration exposure and the effects.
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Fig. 2. 
A hypothetical model of vibration-induced vascular disorders – a revision of the model 

proposed by Griffin 26) by adding essential biodynamic stimuli (vibration stress, strain, and 

power absorption density, etc.) and additional stimuli (quasi-static stress, strain, etc.) 

resulting from other biomechanical inputs such as applied hand forces, arm postures, and 

voluntary dynamic activities of the hand-arm system.
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Fig. 3. 
Distributions of vibration perceptions on the hand-arm system at a low-frequency vibration 

(16 Hz) and a high-frequency vibration (125 Hz) reported by McDowell et al.42). A higher 

score means a stronger vibration perception.
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Fig. 4. 
Relative frequency weightings of the vibration power absorptions in the major substructures 

(arms, palm-dorsal-wrist, and fingers) of the hand-arm system, which are derived from the 

vibration power absorption data predicted by Dong et al.43). The weightings were 

normalized with respect to the vibration power absorption of the arms at 12.5 Hz.
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Fig. 5. 
Finger average VPAD frequency weightings in the three orthogonal directions (X, Y, and Z) 

derived from the mechanical impedance data reported by Dong et al.51).
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Fig. 6. 
(a) A finite element model of a fingertip60); and (b) the frequency dependency of the 

vibration power absorption density at six locations (0.19, 0.27, 0.36, 0.45, 0.58, 0.69 mm) 

measured from the line 30° from the bone center in the model60).
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Fig. 7. 
The finger biodynamic weighting defined as the maximum profile of the finger average 

VPAD weightings.
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Fig. 8. 
An example of the total VPAD weighting (WVPAD-Total) for wX = wY = wZ = 1, together with 

the relative VPAD weightings in the three directions (WVPAD-X, WVPAD-Y, and WVPAD-Z). 

They are derived from the finger mechanical impedance data reported by Dong et al.51).
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Fig. 9. 
An example of the total vibration transmissibility weighting (WTr-Total) for wX = wY = wZ = 

1, together the relative transmissibility weightings in the three directions (WTr-X, WTr-Y, and 

WTr-Z). They are derived from the finger average transmissibility data reported by Welcome 

et al.46).
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Fig. 10. 
An example of the profile transmissibility weighting (WTr-Total-Profile) for wX = wY = wZ = 1, 

together with the profile transmissibility weightings in the three directions (WTr-X-Profile, 

WTr-Y-Profile, and WTr-Z-Profile). They are derived from the finger transmissibility measured at 

several different locations on the fingers46).
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